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This research project investigates the ability of artificial neural networks (ANNs)
to predict time series. Specifically, this project examined two applications: pre-
dicting electrical power demand and earthquake tremors in Los Angeles. The
ANNs modeling power demand not only predicted the next day’s peak power
demand, but also generated a 24-hour profile of the demand for the next day.
These ANNs successfully outperformed the predictive ability of a system used
by the Los Angeles Department of Water and Power (LADWP). In addiiton,
it also performed on par with industry-standard ANNs. The second applica-
tion earthquake prediction was not able to predict earthquake tremors. Due to
the voluminous amounts of data, better results may only be obtained through
researching methods of on-line feature extraction and data preprocessing.

1 Introduction

The field of artificial neural networks (ANNs) has not only led to insights in the under-
standing of the brain; it has also produced numerous applications. One powerful applica-
tion of ANNSs is the ability to simulate highly complex systems—systems that can not be
reliably predicted by traditional, algorithmic computer simulations. Electrical power de-
mand and seismographic readings are both model examples of such systems. They contain
multiple variables with relationships too intricate to state explicitly. Generating mathe-
matical equations to describe this behavior is time-consuming. Furthermore, performance
is poor because the equations can not deal with the complexity of the relationships in the
system. For example, it is difficult to write an equation to predict how the time of sunrise
and sunset will effect the electrical power demand at 8:00 am in Los Angeles during the
summer.

This paper explores a different paradigm for modeling complex systems. Instead of
generating explicit equations to model a system, this project exploits the inherent learning
and pattern recognition ability of ANNs. Going beyond simple toy examples [11], we
investigate how to optimize ANN performance given noise-ridden and complex data. Not
constrained to the “biologically plausible” domain, improvements to ANN performance
will at many times be purely engineered. However, without this constraint it is easy to
see that at many times “the field of ANNs is more of an art than a science [7].”



2 Theory

2.1 Artificial Neural Networks
2.1.1 Multilayer Perceptrons

Because several in-depth discussions of ANNs exist [2, 7, 8], this section will be a brief
overview focused towards this work’s applications. A perceptron is a simple mathematical
model of a single neuron. A multilayer perceptron corresponds to a sequential network of
interconnected neurons as diagrammed below.

Figure 1: Schematic diagram of multilayer perceptron

The output voltage of neuron ¢, one circle, is V; = f(3; wijz; + b;) where the following
terms apply:

e f is a nonlinear transformation
. - .
e 1, is the n’th input to neuron ¢
e w;; is the connection strength to neuron ¢ from input z;

e b, is the bias of neuron i

The output of a perceptron is a nonlinear transformation applied to a weighted sum of
inputs. The nonlinear transformation is often a sigmoid function f(z) = = because

it is bounded as lim, ,,, = 1 and because it’s derivative is easy to express f'(z) =
f(z)[1 = f(x)]. If we let x,, be the n’th input, the above figure (with one output) can be
written as:

ANN (&) = (3 wif (3 wigw; + bi) +b)

The composition of sigmoid functions with adjustable parameters {w} form a func-
tionally complete system [2]. In other words, provided enough hidden nodes n, there
exists a set of weights {w} such that the above function will model any arbitrary function
F(Z) to arbitrary precision e:

Vi : |F(Z) — ANN(Z)| < e

Finding the appropriate weights to model the data could be a simple matter of trial-and-
error, but a more systematic method is to use nonlinear regression.

2



2.1.2 Nonlinear Regression

Finding the set {w} to best model F(Z) is a nonlinear optimization problem. It is first
necessary to decide on a performance measure. A standard measure is the sum-squared
error measure:
1 _, -
E= ¢ Y (F(@) - ANN()

which sums over all training patterns Z. Clearly, the ANN fits F(¥) best where E is
minimized. We can now recast the problem as follows. For an ANN with £ weights, we
have a k + 1 dimensional graph where the first £ axes are the weight values {w} and the
(k + 1)’th axis is E. Each point on the graph represents the performance of a particular
set of weights {w}. This generates a k dimensional error surface much like below.

Figure 2: Example of 2-dimensional error surface where the z axis represents the error.

The above is a simplified example of a 2-dimensional error surface for a hypothetical ANN
with two weights w; and w9 on the horizontal plane and E on the vertical axis. This simple
example demonstrates a key problem — there exist several local minima in E (i.e. where
VE = 0). There are many well-researched solutions to this difficulty: simulated annealing,
a pseudo-Newton’s method approach, genetic algorithms, and gradient descent [1, 2, 3, 13].
This project will focus on the latter technique, gradient descent, with a few engineered
improvements such as a momentum term and an approximate computation of the second
derivative (Hessian) of E [8].

Starting at a random point on the error surface (i.e. a random set of {w}), the ANN
will compute the partial derivative of the error with respect to each weight —g—g after
all training patterns and update each weight accordingly w — w + —773—5. It is notably
difficult to compute —‘g—i for the inner weights of ANN(Z). This is resolved by using
the chain rule, termed back-propagation [12]. Depending on which set of random weights
are selected, the ANN will finish at different local minima. This necessitates running the

network multiple times to obtain several samples of minimal error values.



2.1.3 Recurrent Neural Networks

When time effects the value of the function being modeled, it is beneficial to add some time
dependence in the ANN. Standard ANNs are limited because they sequentially process
the data with no reference to time. A common method of adding time significance to an
ANN is to make the network fully recurrent. This is analogous to the difference between
combinatorial and sequential logic circuits. The main idea of this strategy is to provide
a weighted feedback connection to all perceptrons and compute —g—g summed over an
entire time-series [3].

A partially recurrent network structure is a heuristic version of a fully recurrent net-
work. A partially recurrent network only feeds back certain nodes and it retrains after

each point in a time-series.

ANN(X) ———— ANN(x) ANN(X) ———
F = F(x)-ANN(x)

Figure 3: Schematic diagram of Jordan, Elman and residual-feedback style architectures

From left to right, these diagrams represent a Jordan-style, Elman-style and a residual-
feedback style recurrent network. A Jordan-style network feeds back the previous output
as an input [9], while an Elman style network feeds back the previous hidden nodes’
values as inputs [6]. Both styles allow for the feedback weights to be modified via back-
propagation in the exact same manner as other weights. The final style, residual feedback,
is an architecture purely derived for time-series prediction [4]. This architecture feeds
back the previous prediction’s errors as an input. There is a drawback with the residual
feedback style though; it can only predict one time step in advance because it requires
the previous time step’s target value.

2.1.4 Time Series Analysis

A time series is a set of discrete data recorded from real-world phenomena. A time-series
T ={z1,22,...,Tp_1, 2y} is termed “of order p” when z, = G(x4_1, 242, ..., Tt—p) + €. The
function G is the underlying pattern that determines the system while ¢; is the inherent
noise or measurement error in the data.

Because of the random error term ¢;, we do not want an ANN to model the scatter
plot of T' but rather we want it to model the pattern (G. The problem is we only have
data for T and the magnitude and effect of ¢, is unknown. A common solution to this
dilemma is to use cross-validation [2]. Cross-validation is performed by dividing the data
into two sets, a training set and a testing set. Training is usually measured in epochs,
the number of training set presentations. Typically as the number of the training epochs
increases, we see the following graphs regardless of the type of ANN model:
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Figure 4: Training and testing error as a function of training epochs

The training-set error measures how well the ANN models the data 7. Because we never
train on the testing-set and the error terms ¢, are uncorrelated, the error of the testing-set
is a measure of how well the model follows the common pattern G or generalizes between
data sets. In section A of the graph, the testing-set error just begins to learn the pattern
in the time series T, indicated by the decreasing error . At Z epochs the testing-set error
is minimal — the ANN has discerned the function G at its optimal level. Beyond this
minimum in section B the training-set error continues to decrease while the testing-set
error increases.

In this section the ANN begins to model the noise terms in the model as well. The
testing set increases because the ¢; terms are random. Consider the below figures.

Optimal Training (Z Epochs) Over-Training (Section B)

AbIb pdodel AN Model
o Training Set < Training Set
O Tesling Set O Testing Set

Figure 5: Example of optimal training and over training in an ANN model

Modeling the error (section B) in the training-set produces a “jagged” model which does
not reflect the pattern in the data set. A “smooth” fit — corresponding to Z epochs in the
previous figure — allows for a good generalization of the pattern G. The extra jaggedness
of the over-fitted model is equivalent to the standard deviation of the error. The standard
deviation or variance of the model therefore is a trade-off with how well the model fits
the training data. The latter is measured by the mean squared error, termed the bias.
This bias-variance trade-off is more formally derived in Bishop [2].

A more intuitive undertstanding of bias and variance is the following analogy: shooting
paint pellets at a bull’s eye. The mean of the percent error measures how close we are to
the bull’s eye. The standard deviation of the percent error measures how spread out the



paint splatters from where the pellet hits. Thus, the mean represents how accurate we
are and the standard deviation represents how certain we are of our accuracy. In practice
the bias is easy to minimize while minimizing the variance is usually the focus of ANN
models.

3 Electrical Power Demand

3.1 Background

The need to predict electrical power demand is a vital concern for utility companies. By
predicting the next day’s demand, utility companies can optimally allocate their human
resources and costs associated with starting up various power plants. For the LADWP
and other companies, it is common practice to employ some method for predicting the
next day’s power demand. Because of the complexity of the data, the LADWP only tries
to predict the peak, or maximum, power for the next day; they do not even attempt
to predict a 24 hour profile of the next day’s demand. Claiming a need for “industrial
secrets,” the LADWP will not divulge its predictive algorithm. However, from data
supplied by the LADWP, we can ascertain the predictive ability of their model:

LADWP Senior Model Prediction Error from 1/94 to 3/98
20 T T T T T T T

Percent Error

-20

1 Il Il Il 1 Il 1
Q 100 200 300 400 500 600 700 800
Day

Figure 6: LADWP prediction error — bias = -0.91, variance = 3.54

With data for the predictive ability of the LADWP model, the first project goal was
to produce a comparable model to predict the peak power demand. From this work we
hoped to eventually build a model to predict a 24-hour profile. The peak power demand
contains many of the complex relationships seen in a 24-hour profile of power demand.
Therefore, it provides a good starting point from which to predict the 24-hour profile, the
final goal of this project.

The peak power demand over one year in the Los Angeles area is not trivial. It is
complex with noticeable spikes in the summer days and high frequency dips prevailing
throughout the series.
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Figure 7: Peak power demand in Los Angeles during 1993

The problem can be simplified by first realizing that the high frequency spikes are the
transitions between the weekends and weekdays. Dividing the series into these two groups

makes this evident.
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Figure 8: Weekday peak power demand in Los Angeles during 1993
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Figure 9: Weekend peak power demand in Los Angeles during 1993

Furthermore, counting the days on the x-axis appears to suggest high amplitude spikes
throughout the summer and relative regularity during the winter.

into areas as such (e.g. weekends/weekdays and summer/winter) is a powerful tool used

throughout this paper.

Hourly power prediction is roughly 24 times more complex. For each day there exists
24 points signifying the power demand at each hour, versus 1 point/day for peak power

demand. Below is a graph for the hourly demand for one week.
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Figure 10: Hourly power demand during the week of Feburary 7, 1993

It is notable how this above graph relates to the previous peak power demand graph.
The top points of the seven “bumps” (days) correspond to seven sequential points in
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the peak power demand graph. Over the course of a weekday the power undergoes pre-
ciptious increases and decreases following a pattern related to the workday. Again, we
can find a pattern by dividing the data by hour. Each hour contains far more regularity
over the course of a year. More about exploiting this regularity will be discussed in the
Methodology and Results section.

3.2 Methodology

The Methodology and Results section are closely realted for this application domain.
Most of the work consisted of systematically testing each parameter or method in order
to optimize the network’s overall predictive ability. Thus, the final goal of the work was
to in fact derive the best Methodology. With that in mind, this section will only state
the “best” methodology. The Results section will highlight the data behind some of the
more noteworthy searches performed in obtaining the Methodology.

3.2.1 Peak Power Prediction

Network Inputs

Presenting the ANN’s with the optimal set of inputs is critical. Too few inputs gives
too little information while too many inputs gives too much information (or dimensions)
for the ANN to search through. Finding the optimal subset of previous power demand
values, previous temperatures, predicted temperatures and other meteorological data is
necessary. The optimal set consisted of the following normalized inputs:

e power demand for the previous day and one week ago
e the previous day’s temperature

e the predicted temperature for the current day

e a weekday index and a seasonal cosine index

Any patterns which we discovered such as weekly and seasonal fluctuations need to be
inputted in the form of indices. The weekday index consists of the following:

Sun | Mon | Tues | Wed | Thurs | Fri Sat‘
1[04 1 | 1| -1 [04] 1|

The idea behind the index is to allow the network to distinguish between weekdays and
weekends and allow for the occasional three-day weekend. The seasonal cosine index
consisted of a year-long period with peaks at winter and summer solstice. This allows the
network to distinguish between the high amplitude spike period in the summer and the
relative regularity in the winter.

Network Architectures

All of the networks used were 2-layer, feed-forward, back-propagation, partially-recurrent
networks. The three types of recurrent networks were the aforementioned Elman-style,
Jordan-style and residual-feedback style. The Results section will highlight the best per-
forming, residual-feedback network in comparison to the other architectures.

9



Training Methods

For cross-validation the training set consisted of the peak power demands between
Jan 1991-Dec 1993 and the testing set consisted of the demand between Jan 1994 -March
1996. We removed outlier days such as holidays and days from the Northridge earthquake
(around Jan 18, 1994) from the data. These days had uncharacteristically low values and
did not reflect the overall pattern of power demand.

By training on the training set and testing on the testing set, the network would in
fact predict the power demand two years in advance!.

Training Set Testing Set

|1/1/91 12/31/93| | 1/1/94 3/1/96 |

Figure 11: Cross-validation requires dividing the data into a training and testing set

In this application, it is of course best to minimize the forecast-advance or prediction
horizon. Therefore, we used an online training method where by after each month the
network retrained itself on the month it was just tested on. This minimizes the forecast-
advance to only a month.

Data Division

An interesting methodology, which we will analyze in the Results section, was the use
of data division. For many situations in the peak power prediction, there existed such
stark differences in the data such that training a separate network on each set of data
minimized the overall error of the network. As hinted at earlier, for peak power prediction
we divided the network by: weekdays and weekends and by summer and winter — resulting
in four networks for predicting the different parts of peak power demand.

3.2.2 Hourly Power Prediction

A tremendous suggestion by Connor et al [4] is to divide the data by hour. This generates
24 times as many networks to run but vastly simplifies the problem. By dividing the
data by hour, we reduce the problem to the difficulty level of peak power prediction since
there is now one value to predict for each day. We are also easily able to compare the
prediction ability for each hour to the peak power prediction of the previous section (and
the LADWP prediction model). Since the residual-feedback architecture only functions
for one time step in advance?, we would not be able to use a residual-feedback network
to predict the power demand one day in advance. Having a separate network for each
hour allows us to use a residual-feedback architecture. Using this suggestion all of the
work from peak power prediction can easily be ported to hourly power prediction such as
network inputs, network architecture, training methods and data division.

LAt the end of training, an ANN will have been exposed to all of the actual data up until Dec 31,
1993. With this training, it will predict the power during Jan 1994 but it will also predict the power in
March 96 — without having been retrained on any new information. In effect, the network is predicting
as far as two years in advance

2 A residual feedback network requires the previous actual value in order to predict the next time step.
For example, if a residual feedback network tries to predict 11am , it needs as an input the actual power
demand at 10am. Hence, it is restricted to predicting one hour in advance.
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3.3 Results
3.3.1 Peak Power Prediction

The peak power demand provided a good ’'proof-of-concept’ starting point. Our goal
here is to merely hone a methodology for later application to hourly prediction. In this
preliminary part, we did not see it necessary to test all network architectures nor test
all sections of the data set. Therefore, these results are limited to Elman-style network
architectures and predicting weekends only. Below is a percent error plot of the best ANN
model over the testing period for weekday peak power prediction.

Prediction Errar for anling alman neural network - weexdays 1/1/%4 to 3/4/96

0 i 1y ,ﬂﬂ; Wt

| "
l,]-v -'MJ it %,H

PEICENS Qe

100 200 ano 400 500 800
bras=0.1723  deviation=3.1599

Figure 12: Prediction error for Elman-style network on weekdays

‘ ‘ Bias Variance ‘

Neural Net | 0.17 3.16
LADWP -0.64 3.12

Clearly, these results show that the ANN model reached the predictive ability of the
LADWP model.

In addition to deriving the previous methodology, we gained some unexpected results
from data division into winter and summer networks. Surprisingly, the networks learned
summers best when trained on the full year where as the ANN predicted winters best
when trained on winters alone.

Summer Prediction | Winter Prediction
(training on:) bias variance bias  variance
full year 0.04 3.59 -0.16 3.56
winter only 2.23 4.60 0.31 2.83
summer only | 0.86 4.04 n/a n/a
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The best training method for predicting summers and winters is bold-faced. Incidentally,
training on only the winter to predict the summer (to check if the summer data is just
useless) resulted in extremely poor performance. A possible explanation for these resultsis
that the winter contains more regularity than the summer. The winter could provide some
stability and regularity to the more erratic pattern in the summer. An analogous result
surfaces in hourly prediction as well.

3.3.2 Hourly Power Demand

The major difference with peak power prediction is that different data divisions proved
beneficial to the ANN. Unlike peak power demand, dividing the data by season provided
no improvement in performance. There appeared to be more regularity across seasons
for each hour than the peak power. In addition to hourly division, the only other data
division used was division by weekday and weekend. This division functioned analogously
to dividing by season in peak power demand.

pavrive (10 am) | Weekend Prediction | Weekday Prediction

(training on:) bias variance bias variance
full week 0.19 4.11 0.31 3.26
weekdays only | n/a n/a -0.01 2.63
weekends only | 0.24 6.40 n/a n/a

~nicarTivE (4 aM)| Weekend Prediction | Weekday Prediction

(training on:) bias variance bias variance
full week 0.50 2.76 0.06 2.70
weekdays only | n/a n/a 0.01 3.09
weekends only | 0.11 4.19 n/a n/a

Again, it is best to predict weekdays by training on weekdays only but to train the entire
year to predict weekends. This same training relationship is seen only during the work
hours (7am-7eum). The night hours contain such consistent regularity that weekday division
is harmful.

Residual feedback proved to be the best network architecture for this application. It
consistently, slightly outperformed Elman and Jordan style networks in several tests.

Variance at predicting hour:

3AM 3PM 5PM 12AM

residual-feedback | 2.57 4.37 4.98 3.11
Jordan-style | 2.74 4.54 5.07 3.26
Elman-style | 3.04 4.50 5.01 3.66

This sampling of hourly predictions is indicative of the performance improvement. There
are occasions when the residual-feedback notably outperforms the others but on certain
hours, it only predicts on par with the other styles.

The final results can now be summarized as follows:
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Mean of the
Bias Variance absolute value

Neural Net Model | 0.11 3.21 2.36
LADWP Model |-0.91 3.54 2.68
ANNSTLF n/a n/a 2.64

The above comparison needs some explanation. The neural network model predicts the
power demand for all 24 hours in a day where as the LADWP model predicts only the
peak power demand for that day. In other words, the neural net predicts a 24 hour
profile (24 times as many points) better than the LADWP can predict just the peak
power for that day. The third column and row is included in order compare this model
with a recent model published in IEEE [10]. ANNSTLF is a neural network model used
commonly by industry, which likewise predicts all 24 hours of power demand in advance.
The ANNSTLF utilizes both different pre-processing techniques and network design. The
ANNSTLF uses a hierarchy of non-recurrent neural networks — there is one hierarchy of
networks for predicting each hour in the day. Three networks in the first hierarchy layer
are trained specifically to extract the weekly, daily and hourly fluctuations, respectively.
There is one network on the upper layer of the hierarchy. This network is actually an
auto-regressive model which linearly combines the outputs of the lower level networks.
The ANNSTLF model uses similar network inputs plus humidity. The number quoted
for ANNSTLF is an average (mean) of the corresponding 5 test errors that the authors
quoted in their paper (the five values ranged from 2.15 to 3.22). It should be strongly
noted though that ANNSTLF was trained and tested on separate data. This demonstrates
that the model produced and examined in this research not only outperforms the LADWP
but also is on par with the industry’s best ANN solution.

We can analyze the specific strengths and weaknesses of our model by examining
specific subsets of the data. Dividing the prediction error of the model into weekday

and weekend performances reveals that the neural network significantly outperforms the
LADWP model on the weekends.

Weekend Prediction | Weekday Prediction
bias variance bias variance
Neural Net | 0.13 3.07 0.06 3.55
LADWP Model | -0.63 3.12 -1.58 4.32

Both the standard deviation and the mean of the error for the ANN model are significantly
below that of the LADWP during the weekends. For the weekdays the ANN only slightly
improves on the LADWP performance.

Likewise, we can examine on which hours the ANN outperformed the LADWP model.
Generally, on all hours the ANN attained a mean percent error below the LADWP model.
What is most interesting is comparing the standard deviations of the error.
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Figure 13: Prediction performance (variance) of ANN model divided by hour

The solid line is the hourly prediction and the horizontal line is the LADWP peak power
prediction. This graph shows that these models outperform the LADWP peak power
prediction during the morning and night hours but not during the late afternoon and
evening.

4 Earthquake Prediction

4.1 Background

Seismographic readings (ground velocity measurements) for earthquakes often generate a
precursor wave up to 30 seconds in advance of the main tremor. Below is the seismograph
reading of a complete earthquake tremor. Note the motion before the large amplitude
spikes.
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Figure 14: Seismograph velocity recordings of a typical earthquake

The motion prior to the main thrust of the earthquake is the precursor tremor. Previous
geophysical research has shown a correlation between features of the precursor tremor
and the strength and location of the main tremor. Already, studies have produced ANNs
capable of predicting earthquake tremors with limited ability [5]. However, these studies
have been more like “proof of concept” papers. They limit themselves to earthquakes
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of certain magnitudes and locations and use unrealistic data transformations requiring
foreknowledge of the entire earthquake. It is the hope of this work to produce a practical
system not limited to those constraints. We will use the voluminous amounts of data
available from the network of seismographs in the Los Angeles area in order to predict
the epicenter and the strength of the oncoming main tremors.

4.2 Methodology

Because both applications deal with simulating time-series, predicting seismograph read-
ings has a very similar methodology to predicting electrical power demand. One important
difference with this application is that there is a slightly different goal. With power de-
mand the only concern is minimizing the prediction error. With seismograph prediction
we are concerned with two conflicting goals: both minimizing the prediction error and
maximizing how far in advance the network can predict. We have termed the latter
the “forecast-advance.” A solution for these conflicting goals will be to create a group
of networks, each predicting with a different forecast-advance. Generally, the smaller
the forecast-advance, the more reliable the prediction. As the time to the onset of an
earthquake approaches this group of networks will output an improving prediction for the
oncoming main tremor.

The network receives a window of previous seismograph values. How far back this
window is in time is a function of the specified forecast-advance for the network. Before
inputting these values, a tremendous amount of pre-processing is performed. The seis-
mograph samples at 20 points per second, generating waveforms of about 6000 points
(see earlier figure). These graphs contain far too much fluctuation and high-frequency
noise for the networks to process. We therefore need to produce an online envelope of
the waveform as input. The phrase online envelope is emphasized because a traditional
envelope uses the Hilbert transformation of the entire waveform and thus, can not be used
in an online, functioning model. To solve this problem we created an algorithm based on
peak-detection and interpolation, which generates the envelope as the waveform arrives.

There are two other problems with the data: computational time and scaling with
orders of magnitude. 6000 data points per component per station per earthquake — in
a data set of 3 components, 3 stations and 20 earthquakes — generates too many data
points for the network to process in a reasonable amount of time. Hence, waveforms need
to be down-sampled. Also, earthquakes vary by orders of magnitude (e.g. from 103 to 107)
meaning that the large earthquakes would drown out the smaller earthquakes and quickly
saturate the sigmoidal transfer functions. Therefore, before normalizing the seismograph
data, we need to take the logarithm of the data in order to allow the network to deal
with all magnitudes of earthquakes. Taking all of this into account, the seismograph data
undergoes the following pre-processing steps:
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Figure 15: Pre-processing steps for earthquake seismograph
Envelope — Down-sampling (10:1) — Logarithmic scaling — Normalization

Finally, we also added the PGA, the peak ground acceleration, of the waveform sampled
thus far. The PGA has been shown to have a strong correlation with the overall magnitude
of the oncoming tremor. We again divided the data set into a training set and a testing
set — the first for training and the second for online testing and updating.

A residual-feedback network can not be used in this application. One needs the previ-
ous prediction’s errors in order to predict the next value in a residual-feedback network.
Since we are predicting as far as 30 seconds in advance, how well the network performed
will not be known for as much as 30 seconds. The large forecast-advance prevented us
from using a residual-feedback architecture. In the previous application we found that
the Jordan-style slightly outperformed Elman-style networks. For this reason we chose to
use a Jordan-style network. More will be discussed about this in the Discussion section.

4.3 Results

The general strategy behind these results is to see how well a neural network can use
the current readings at two locations in order to predict the seismograph readings at a
third location. In addition to predicting the oncoming tremor, this model can also be
used to predict the epicenter quickly. We can perform the latter by simply predicting
in parallel the waveforms for all of the seismographs in the Southern California Seismic
Network (SCSN). Whichever waveform has the largest peak provides a rough measure
of the epicenter. For these preliminary tests we gathered the following data from the
Southern California Earthquake Center Data Center:

e 20 Northridge aftershocks between 01/18/94 and 05/18/94 of magnitude 4 or greater

e Broadband data-stream (3-component velocity) recorded at 20 samples/second
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e Station recordings at Pasadena (PAS), Calabassas (CAL) and University of Southern
California (USC)

We performed two sets of tests on the data. We attempted to predict the current seis-
mograph value at one station (PAS) from the previous seismograph readings at the two
other stations. We also tried to predict the future value of one station (PAS) based on the
past values of that same station (PAS). The second test provided a base test to compare
against — specifically, whether the network can predict, at the minimum, the value of
the same station it is receiving input from. Below is a chart of the mean and standard
deviation of the errors for predicting PAS with different forecast-advance’s.

2.5 sec Forecast-Advance | 15 sec Forecast-Advance
(trained on: ) | bias variance bias variance
PAS 1.98 18.50 13.60 38.51
CAL and USC | 4.35 20.35 5.84 30.24

The above overall error values only hints at the inability of the model. The real fault in
the model can only be seen in the total error plot.
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Figure 16: Prediction performance of ANN model on various earthquake tremors
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Zoom in on Overlay of Network Outputs and Target Quiputs
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Figure 17: Zoom-in on overlay of prediction and actual tremor values

The first plot is an overlay of the target and network output over a testing set. The second
figure is a zoom-in on the network output and error for predicting PAS from CAL and
USC at 2.5 seconds in advance. The zoom-in on the graph is typical of how the network
consistently “predicts” the onset of the main tremor late and usually underestimates
it. Since the network is online, it retrains itself on the oncoming tremor. Thus, the
network only starts predicting the main tremor upon its arrival. What these plots show,
especially the zoom-in, is that the network is not predicting the earthquakes — it is only
“reacting” to them after the fact through retraining. Even for the easier base test
of predicting PAS from just PAS inputs, the network performs just as poorly. Thus, it
appears that it does not matter where the input signal is arriving from because all signals
appear to be just as (un)beneficial.

5 Discussion

The ability of ANNs to predict the behavior of a complex system such as electrical power
demand demonstrates the applicability of this field of artificial intelligence research. Pre-
dicting electrical power consumption has proven to be a successful endeavor. Hopefully,
in the future ANNs will likewise be as successful with predicting earthquakes. Predicting
electrical power demand is a useful application and one that ANNs can fulfill quite well.
Better results could still be obtained with better resources. Adding other meteorological
inputs (humidity), reducing the forecast-advance and simply running more trials can lead
to a better predictive ability.

More work needs to be performed before predicting earthquakes rises from a theoretical
topic to one used in practice. Retesting the data on an Elman-style network could provide
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a good start. Because of the complexity of the data, the hidden activations of the network
could provide a more meaningful input than simply its previous prediction. However, most
of the problems for the earthquake prediction model appear to be in pre-processing the
data. Even after the already, voluminous amounts of pre-processing performed, we need
to perform even more. The most notable problem is the logarithmic scaling. This non-
linear transformation requires the input to be positive. In order to solve this problem,
we first offset the velocity values so that the minimum velocity is above zero. Even with
the offset the output appears to falsely characterize the inputs at points. In the previous
figure we can see this by the large downward spike, which occurs at the minimum of
the seismogram, even though there is no such equivalent dramatic change in the original
data set; this is due to the nonlinearity of the transformation. What value to choose for
the minimum offset requires prescience of the entire waveform, making the ideal offset
unattainable.

We also need more feature extraction for the model. The PGA is a good example of
other geophysical features to search for in the waveform. Other ideas include extracting
the CAV (Cumulative Average Velocity) and spectral information. The CAV is difficult to
scale, yet again because the CAV varies by orders of magnitude. The complete spectrum
can not be inputted to the network so perhaps an enveloped, downsampled version needs
to be used.

The first paper produced by Dowla using ANNSs to predict earthquakes garnered better
results than this work. There are two main reasons for this. Dowla’s paper restricted the
inputs to earthquakes between magnitude 4.1 and 4.5 with nearby epicenters, making the
problem dramatically easier. They did not have to deal with scaling orders of magnitude
for the time-series values nor the CAV input. Secondly the other paper used unrealis-
tic pre-processing techniques which require prescience of the entire waveform before it
arrives. These techniques included using a Hilbert transformation in the envelope, and
pre-knowledge of the PGA for correct scaling. This work at the minimum shows that fur-
ther study into feature extraction and preprocessing, especially when dealing with orders
of magnitude, could be quite beneficial for this model. More collaboration with geophysi-
cists and other experts in the field is needed in order to determine other possible feature
extractions. As of right now, the ANNs are presented too much data to make sense of.
By highlighting areas in the data relevant to earthquakes, we can make ANNs a more
feasible solution to earthquake prediction.
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